dc.date.accessioned |
2019-01-22T20:51:27Z |
|
dc.date.available |
2019-01-22T20:51:27Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
1995-0802 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/149119 |
|
dc.description.abstract |
© 2018, Pleiades Publishing, Ltd. For each ε > 0 and each scalar real valued and continuous on a compact set Ω ⊂ Rn, ξ ∈ [a, b] function g(τ, ξ) such that g(τ, a) · g(τ, b) < 0 we construct a function gε(τ, ξ), for which the least root of the equation gε(τ, ξ) = 0 continuously depends on τ, while |g(τ, ξ) − gε(τ, ξ)| < ε. We give examples illustrating the fact that in a general case assumptions are unimprovable. |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.subject |
continuousness |
|
dc.subject |
Implicit functions |
|
dc.subject |
zeros of functions |
|
dc.title |
The Least Root of a Continuous Function |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
39 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
200 |
|
dc.source.id |
SCOPUS19950802-2018-39-2-SID85044293277 |
|