dc.contributor.author |
Kayumov I. |
|
dc.contributor.author |
Ponnusamy S. |
|
dc.contributor.author |
Xuan L. |
|
dc.date.accessioned |
2019-01-22T20:46:33Z |
|
dc.date.available |
2019-01-22T20:46:33Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
1661-8254 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/148716 |
|
dc.description.abstract |
© 2018, Springer International Publishing AG, part of Springer Nature. In this article we obtain two sharp results concerning the analytic part of harmonic mappings f= h+ g¯ from the class SH0(S) which was recently introduced by Ponnusamy and Sairam Kaliraj. For example, we get the sharp estimate for | arg h′(z) | in the case when |z|≤1/2 and obtain the sharp radius of convexity for h. Our approach is applicable to a more general situation. Finally, we determine simple condition on the analytic part of univalent harmonic mappings so that it is in Hpspaces for 0 < p< 1 / 3. |
|
dc.relation.ispartofseries |
Complex Analysis and Operator Theory |
|
dc.subject |
Disk automorphism |
|
dc.subject |
Harmonic (analytic) Hardy spaces |
|
dc.subject |
Harmonic univalent and convex mappings |
|
dc.subject |
Integral means |
|
dc.subject |
Koebe transform |
|
dc.subject |
Rotation theorem |
|
dc.subject |
Schwarz–Pick Lemma |
|
dc.title |
On the Analytic Part of Univalent Harmonic Mappings |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
5 |
|
dc.relation.ispartofseries-volume |
12 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1291 |
|
dc.source.id |
SCOPUS16618254-2018-12-5-SID85040794260 |
|