Электронный архив

Kriging Empirical Mode Decomposition via support vector machine learning technique for autonomous operation diagnosing of CHP in microgrid

Показать сокращенную информацию

dc.contributor.author Shao Z.
dc.contributor.author Wakil K.
dc.contributor.author Usak M.
dc.contributor.author Amin Heidari M.
dc.contributor.author Wang B.
dc.contributor.author Simoes R.
dc.date.accessioned 2019-01-22T20:45:33Z
dc.date.available 2019-01-22T20:45:33Z
dc.date.issued 2018
dc.identifier.issn 1359-4311
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/148624
dc.description.abstract © 2018 Elsevier Ltd Combined Heat and Power (CHP) is the one of new energy resources which has been added to power system in recent years. High efficiency, Loss reducing of power system and etc, are the main advantages of CHP as same as other distributed generations. But, unwanted islanding is one of the main problems for this generation. This article presents a novel technique for CHP unit islanding detection using Kriging Empirical Mode Decomposition (KEMD) and Support Vector Machine (SVM) pattern learning technique. In this technique the variation of Intrinsic Mode Functions (IMF) of local signals in two-dimensional mode is utilized as input data of relay. An optimal signal selection model is applied to the proposed relay in order to Non-Detection Zone (NDZ) and fails detection reducing. The best signal selection is introduces based on mean square value between islanding and non-islanding conditions. Also, by considering Optimal SVM model for the proposed relay as a pattern recognizing and weighing it using shark smell optimization, this technique has overcome the threshold selection problem. This relay is applied to CHP system in a microgrid system contains various types of DGs. Many islanding and non-islanding situation in various operation conditions in the studied microgrid are simulated. The results of simulation results are show that the proposed relay is suitable for microgrid application. Negligible NDZ, high detection time, zero fail detection and low cost of this relay are the main advantages of the proposed technique.
dc.relation.ispartofseries Applied Thermal Engineering
dc.subject CHP
dc.subject Empirical mode decomposition
dc.subject Islanding detection
dc.subject Optimal support vector machine
dc.subject Pattern learning
dc.subject Signal selection
dc.title Kriging Empirical Mode Decomposition via support vector machine learning technique for autonomous operation diagnosing of CHP in microgrid
dc.type Article
dc.relation.ispartofseries-volume 145
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 58
dc.source.id SCOPUS13594311-2018-145-SID85053076879


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика