Электронный архив

Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale

Показать сокращенную информацию

dc.date.accessioned 2019-01-22T20:45:31Z
dc.date.available 2019-01-22T20:45:31Z
dc.date.issued 2018
dc.identifier.issn 1354-1013
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/148621
dc.description.abstract © 2017 John Wiley & Sons Ltd Despite its fundamental role for carbon (C) and nutrient cycling, rhizodeposition remains ‘the hidden half of the hidden half’: it is highly dynamic and rhizodeposits are rapidly incorporated into microorganisms, soil organic matter, and decomposed to CO2. Therefore, rhizodeposition is rarely quantified and remains the most uncertain part of the soil C cycle and of C fluxes in terrestrial ecosystems. This review synthesizes and generalizes the literature on C inputs by rhizodeposition under crops and grasslands (281 data sets). The allocation dynamics of assimilated C (after13C-CO2or14C-CO2labeling of plants) were quantified within shoots, shoot respiration, roots, net rhizodeposition (i.e., C remaining in soil for longer periods), root-derived CO2, and microorganisms. Partitioning of C pools and fluxes were used to extrapolate belowground C inputs via rhizodeposition to ecosystem level. Allocation from shoots to roots reaches a maximum within the first day after C assimilation. Annual crops retained more C (45% of assimilated13C or14C) in shoots than grasses (34%), mainly perennials, and allocated 1.5 times less C belowground. For crops, belowground C allocation was maximal during the first 1–2 months of growth and decreased very fast thereafter. For grasses, it peaked after 2–4 months and remained very high within the second year causing much longer allocation periods. Despite higher belowground C allocation by grasses (33%) than crops (21%), its distribution between various belowground pools remains very similar. Hence, the total C allocated belowground depends on the plant species, but its further fate is species independent. This review demonstrates that C partitioning can be used in various approaches, e.g., root sampling, CO2flux measurements, to assess rhizodeposits’ pools and fluxes at pot, plot, field and ecosystem scale and so, to close the most uncertain gap of the terrestrial C cycle.
dc.relation.ispartofseries Global Change Biology
dc.subject belowground carbon allocation
dc.subject carbon cycle
dc.subject crops
dc.subject grasses
dc.subject isotopic approaches
dc.subject rhizosphere microorganisms
dc.subject root exudation
dc.subject soil CO efflux 2
dc.subject trees
dc.title Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale
dc.type Review
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 24
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1
dc.source.id SCOPUS13541013-2018-24-1-SID85030149364


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика