Показать сокращенную информацию
dc.date.accessioned | 2019-01-22T20:42:37Z | |
dc.date.available | 2019-01-22T20:42:37Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1072-3374 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/148383 | |
dc.description.abstract | © 2018, Springer Science+Business Media, LLC, part of Springer Nature. The paper studies asymptotic behavior of posterior distribution of a real parameter centered by a n-consistent estimate. The uniform analog of the Bernstein–von Mises theorem is proved. This result is extended to asymptotic expansion of the posterior distribution in powers of n−1/2. This expansion is generalized as the expansion of expectations of functions with polynomial majorant with respect to posterior distribution. | |
dc.relation.ispartofseries | Journal of Mathematical Sciences (United States) | |
dc.title | Asymptotic Expansion of Posterior Distribution of Parameter Centered by a √n -Consistent Estimate | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 229 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 678 | |
dc.source.id | SCOPUS10723374-2018-229-6-SID85042208700 |