dc.date.accessioned |
2019-01-22T20:42:37Z |
|
dc.date.available |
2019-01-22T20:42:37Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
1072-3374 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/148383 |
|
dc.description.abstract |
© 2018, Springer Science+Business Media, LLC, part of Springer Nature. The paper studies asymptotic behavior of posterior distribution of a real parameter centered by a n-consistent estimate. The uniform analog of the Bernstein–von Mises theorem is proved. This result is extended to asymptotic expansion of the posterior distribution in powers of n−1/2. This expansion is generalized as the expansion of expectations of functions with polynomial majorant with respect to posterior distribution. |
|
dc.relation.ispartofseries |
Journal of Mathematical Sciences (United States) |
|
dc.title |
Asymptotic Expansion of Posterior Distribution of Parameter Centered by a √n -Consistent Estimate |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
6 |
|
dc.relation.ispartofseries-volume |
229 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
678 |
|
dc.source.id |
SCOPUS10723374-2018-229-6-SID85042208700 |
|