Показать сокращенную информацию
dc.contributor.author | Romanova E. | |
dc.date.accessioned | 2019-01-22T20:41:43Z | |
dc.date.available | 2019-01-22T20:41:43Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/148322 | |
dc.description.abstract | © 2018, Allerton Press, Inc. We consider the quotient manifold of the manifold of nondegenerate affinor fields on a compact manifold with respect to the action of the group of nowhere vanishing functions. This manifold is endowed with a structure of infinite-dimensional Lie group. On this Lie group, we construct an object of linear connection with respect to which all left-invariant vector fields are covariantly constant (the Cartan connection). We also find the geodesics of the Cartan connection. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | Cartan connection | |
dc.subject | geodesic | |
dc.subject | infinite-dimensional differentiable manifold | |
dc.subject | left-invariant vector field | |
dc.subject | Lie algebra | |
dc.subject | Lie group | |
dc.subject | linear connection | |
dc.subject | one-parameter subgroups of the Lie group | |
dc.title | On Geodesic Curves on Quotient Manifold of Nondegenerate Affinor Fields | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 8 | |
dc.relation.ispartofseries-volume | 62 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 43 | |
dc.source.id | SCOPUS1066369X-2018-62-8-SID85050479629 |