dc.date.accessioned | 2019-01-22T20:41:37Z | |
dc.date.available | 2019-01-22T20:41:37Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/148316 | |
dc.description.abstract | © Allerton Press, Inc., 2018. For a normed algebra A and natural numbers k we introduce and investigate the ∥·∥- closed classes Pk(A). We show that P1(A) is a subset of Pk(A) for all k. If T in P1(A), then Tn lies in P1(A) for all natural n. If A is unital, U, V ∈ A are such that ∥U∥ = ∥V∥ = 1, V U = I and T lies in Pk(A), then UTV lies in Pk(A) for all natural k. Let A be unital, then 1) if an element T in P1(A) is right invertible, then any right inverse element T−1 lies in P1(A); 2) for ∥I∥ = 1 the class P1(A) consists of normaloid elements; 3) if the spectrum of an element T, T ∈ P1(A) lies on the unit circle, then ∥TX∥ = ∥X∥ for all X ∈ A. If A = B(H), then the class P1(A) coincides with the set of all paranormal operators on a Hilbert space H. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | C -algebra ∗ | |
dc.subject | Hilbert space | |
dc.subject | Hyponormal operator | |
dc.subject | Isometry | |
dc.subject | Normaloid operator | |
dc.subject | Normed algebra | |
dc.subject | Paranormal operator | |
dc.subject | Quasinilpotent operator | |
dc.subject | Unital algebra | |
dc.title | Paranormal elements in normed algebra | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 5 | |
dc.relation.ispartofseries-volume | 62 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 10 | |
dc.source.id | SCOPUS1066369X-2018-62-5-SID85048938648 |