Электронный архив

Machine learning methods in computational toxicology

Показать сокращенную информацию

dc.date.accessioned 2019-01-22T20:41:28Z
dc.date.available 2019-01-22T20:41:28Z
dc.date.issued 2018
dc.identifier.issn 1064-3745
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/148301
dc.description.abstract © Springer Science+Business Media, LLC, part of Springer Nature 2018. Various methods of machine learning, supervised and unsupervised, linear and nonlinear, classification and regression, in combination with various types of molecular descriptors, both “handcrafted” and “data-driven,” are considered in the context of their use in computational toxicology. The use of multiple linear regression, variants of naïve Bayes classifier, k-nearest neighbors, support vector machine, decision trees, ensemble learning, random forest, several types of neural networks, and deep learning is the focus of attention of this review. The role of fragment descriptors, graph mining, and graph kernels is highlighted. The application of unsupervised methods, such as Kohonen’s self-organizing maps and related approaches, which allow for combining predictions with data analysis and visualization, is also considered. The necessity of applying a wide range of machine learning methods in computational toxicology is underlined.
dc.relation.ispartofseries Methods in Molecular Biology
dc.subject Computational toxicology
dc.subject Deep learning
dc.subject Machine learning
dc.subject Neural networks
dc.subject Random forest
dc.subject Support vector machines
dc.title Machine learning methods in computational toxicology
dc.type Chapter
dc.relation.ispartofseries-volume 1800
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 119
dc.source.id SCOPUS10643745-2018-1800-SID85048998815


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика