Электронный архив

Elementary theories and hereditary undecidability for semilattices of numberings

Показать сокращенную информацию

dc.date.accessioned 2019-01-22T20:38:39Z
dc.date.available 2019-01-22T20:38:39Z
dc.date.issued 2018
dc.identifier.issn 0933-5846
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/148096
dc.description.abstract © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. A major theme in the study of degree structures of all types has been the question of the decidability or undecidability of their first order theories. This is a natural and fundamental question that is an important goal in the analysis of these structures. In this paper, we study decidability for theories of upper semilattices that arise from the theory of numberings. We use the following approach: given a level of complexity, say Σα0, we consider the upper semilattice RΣα0 of all Σα0-computable numberings of all Σα0-computable families of subsets of N. We prove that the theory of the semilattice of all computable numberings is computably isomorphic to first order arithmetic. We show that the theory of the semilattice of all numberings is computably isomorphic to second order arithmetic. We also obtain a lower bound for the 1-degree of the theory of the semilattice of all Σα0-computable numberings, where α≥ 2 is a computable successor ordinal. Furthermore, it is shown that for any of the theories T mentioned above, the Π5-fragment of T is hereditarily undecidable. Similar results are obtained for the structure of all computably enumerable equivalence relations on N, equipped with composition.
dc.relation.ispartofseries Archive for Mathematical Logic
dc.subject Computability theory
dc.subject Computably enumerable equivalence relation
dc.subject Elementary definability
dc.subject First order arithmetic
dc.subject Hereditary undecidability
dc.subject Numbering theory
dc.subject Rogers semilattice
dc.subject Second order arithmetic
dc.subject Upper semilattice
dc.title Elementary theories and hereditary undecidability for semilattices of numberings
dc.type Article in Press
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS09335846-2018-SID85053898304


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика