Показать сокращенную информацию
dc.date.accessioned | 2019-01-22T20:38:22Z | |
dc.date.available | 2019-01-22T20:38:22Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0926-2601 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/148083 | |
dc.description.abstract | © 2018, Springer Nature B.V. In this article, we prove the Riesz - Fejér inequality for complex-valued harmonic functions in the harmonic Hardy space hp for all p > 1. The result is sharp for p ∈ (1,2]. Moreover, we prove two variant forms of Riesz-Fejér inequality for harmonic functions, for the special case p = 2. | |
dc.relation.ispartofseries | Potential Analysis | |
dc.subject | Harmonic hardy spaces | |
dc.subject | Integral means | |
dc.subject | Riesz - Fejér type inequalities | |
dc.title | Riesz-Fejér Inequalities for Harmonic Functions | |
dc.type | Article in Press | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS09262601-2018-SID85053701504 |