dc.date.accessioned |
2019-01-22T20:38:22Z |
|
dc.date.available |
2019-01-22T20:38:22Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
0926-2601 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/148083 |
|
dc.description.abstract |
© 2018, Springer Nature B.V. In this article, we prove the Riesz - Fejér inequality for complex-valued harmonic functions in the harmonic Hardy space hp for all p > 1. The result is sharp for p ∈ (1,2]. Moreover, we prove two variant forms of Riesz-Fejér inequality for harmonic functions, for the special case p = 2. |
|
dc.relation.ispartofseries |
Potential Analysis |
|
dc.subject |
Harmonic hardy spaces |
|
dc.subject |
Integral means |
|
dc.subject |
Riesz - Fejér type inequalities |
|
dc.title |
Riesz-Fejér Inequalities for Harmonic Functions |
|
dc.type |
Article in Press |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.source.id |
SCOPUS09262601-2018-SID85053701504 |
|