Показать сокращенную информацию
dc.contributor.author | Bianchi M. | |
dc.contributor.author | Konnov I. | |
dc.contributor.author | Pini R. | |
dc.date.accessioned | 2019-01-22T20:38:20Z | |
dc.date.available | 2019-01-22T20:38:20Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0925-5001 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/148080 | |
dc.description.abstract | © 2018, Springer Science+Business Media, LLC, part of Springer Nature. We solve a general vector variational inequality problem in a finite—dimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We establish a new equivalence property, which enables us to replace each vector variational inequality with a scalar set-valued variational inequality. Then, we approximate the scalar set-valued variational inequality with a sequence of penalized problems, and we study the convergence of their solutions to solutions of the original one. | |
dc.relation.ispartofseries | Journal of Global Optimization | |
dc.subject | Approximation sequence | |
dc.subject | Coercivity conditions | |
dc.subject | Non-stationarity | |
dc.subject | Penalty method | |
dc.subject | Set-valued mappings | |
dc.subject | Vector variational inequality | |
dc.title | Limit vector variational inequality problems via scalarization | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 72 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 579 | |
dc.source.id | SCOPUS09255001-2018-72-3-SID85055490007 |