Электронный архив

A user-study on online adaptation of neural machine translation to human post-edits

Показать сокращенную информацию

dc.contributor.author Karimova S.
dc.contributor.author Simianer P.
dc.contributor.author Riezler S.
dc.date.accessioned 2019-01-22T20:38:17Z
dc.date.available 2019-01-22T20:38:17Z
dc.date.issued 2018
dc.identifier.issn 0922-6567
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/148075
dc.description.abstract © 2018, Springer Nature B.V. The advantages of neural machine translation (NMT) have been extensively validated for offline translation of several language pairs for different domains of spoken and written language. However, research on interactive learning of NMT by adaptation to human post-edits has so far been confined to simulation experiments. We present the first user study on online adaptation of NMT to user post-edits in the domain of patent translation. Our study involves 29 human subjects (translation students) whose post-editing effort and translation quality were measured on about 4500 interactions of a human post-editor and an NMT system integrating an online adaptive learning algorithm. Our experimental results show a significant reduction in human post-editing effort due to online adaptation in NMT according to several evaluation metrics, including hTER, hBLEU, and KSMR. Furthermore, we found significant improvements in BLEU/TER between NMT outputs and professional translations in granted patents, providing further evidence for the advantages of online adaptive NMT in an interactive setup.
dc.relation.ispartofseries Machine Translation
dc.subject Neural machine translation
dc.subject Online adaptation
dc.subject Post-editing
dc.title A user-study on online adaptation of neural machine translation to human post-edits
dc.type Article
dc.relation.ispartofseries-issue 4
dc.relation.ispartofseries-volume 32
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 309
dc.source.id SCOPUS09226567-2018-32-4-SID85056338798


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика