Kazan Federal University Digital Repository

Solubility predictions of acetanilide derivatives in water: Combining thermochemistry and thermodynamic modeling

Show simple item record

dc.date.accessioned 2019-01-22T20:37:21Z
dc.date.available 2019-01-22T20:37:21Z
dc.date.issued 2018
dc.identifier.issn 0378-3812
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/148002
dc.description.abstract © 2017 Elsevier B.V. Knowledge about solubility in water is required for crystallization processes, for the development of structure-property relationships, for the establishment of solubility scales, assessing environmental contamination, and for validating thermodynamic models. Approaches are desired that allow predicting solubility without the use of any experimental solubility data. Most methods that have been proposed to predict aqueous solubility of organic compounds face low prediction reliability and the lack of model interpretability. This work proposes the use of a thermodynamic approach for the prediction of solubility of acetanilide and its derivatives in water. This approach requires fusion enthalpy and fusion temperature as well as the activity coefficient of the respective acetanilide derivative. The latter was obtained by the equation of state PC-SAFT, which uses thermochemistry data as input for model parametrization. The thermochemical data on acetanilide and its derivatives (vapor and sublimation pressures, sublimation and fusion enthalpies) were collected from the literature and evaluated for internal consistency. In order to validate the final solubility prediction model, aqueous solubility of acetanilide and 17 derivatives were predicted and compared to experimental solubility data from literature at 298.15 K as well as to an ideal solubility model, which assumes ideal mixture behavior. The results showed that mixtures of acetanilides + water are highly non-ideal, and the average deviations between solubility data and ideal solubility model could be reduced by two orders of magnitude by using PC-SAFT for the solubility predictions. More promising, PC-SAFT was found to allow predicting the temperature dependence of the aqueous solubility accurately, while ideal solubility model failed to quantitatively describe temperature-dependent solubility.
dc.relation.ispartofseries Fluid Phase Equilibria
dc.subject Activity coefficients
dc.subject Aqueous solution
dc.subject Fusion properties
dc.subject Molecular interactions
dc.subject PC-SAFT
dc.title Solubility predictions of acetanilide derivatives in water: Combining thermochemistry and thermodynamic modeling
dc.type Article
dc.relation.ispartofseries-volume 455
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 43
dc.source.id SCOPUS03783812-2018-455-SID85030661175


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics