dc.date.accessioned |
2019-01-22T20:36:50Z |
|
dc.date.available |
2019-01-22T20:36:50Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
0302-9743 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/147969 |
|
dc.description.abstract |
© IFIP International Federation for Information Processing 2018. We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata versions of these models. |
|
dc.relation.ispartofseries |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
|
dc.subject |
Affine models |
|
dc.subject |
Las Vegas computation |
|
dc.subject |
OBDDs |
|
dc.subject |
Quantum and probabilistic computation |
|
dc.subject |
Succinctness |
|
dc.subject |
Zero-error |
|
dc.title |
Error-free affine, unitary, and probabilistic OBDDS |
|
dc.type |
Conference Paper |
|
dc.relation.ispartofseries-volume |
10952 LNCS |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
175 |
|
dc.source.id |
SCOPUS03029743-2018-10952-SID85050618811 |
|