Показать сокращенную информацию
dc.date.accessioned | 2019-01-22T20:36:16Z | |
dc.date.available | 2019-01-22T20:36:16Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0264-9381 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/147927 | |
dc.description.abstract | © 2018 IOP Publishing Ltd. We construct a classification of dispersion relations for electromagnetic waves non-minimally coupled to space-time curvature, based on analysis of the susceptibility tensor which appears in the non-minimal Einstein-Maxwell theory. We classify solutions to the Fresnel equation for the model with a trace-free non-minimal susceptibility tensor according to the Petrov scheme. For all Petrov types we discuss specific features of the dispersion relations, and plot the corresponding wave surfaces. | |
dc.relation.ispartofseries | Classical and Quantum Gravity | |
dc.subject | dispersion relation | |
dc.subject | non-minimal coupling | |
dc.subject | Petrov type | |
dc.subject | wave surface | |
dc.title | Non-minimal Einstein-Maxwell theory: The Fresnel equation and the Petrov classification of a trace-free susceptibility tensor | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 35 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS02649381-2018-35-6-SID85042385962 |