Показать сокращенную информацию
dc.date.accessioned | 2019-01-22T20:33:18Z | |
dc.date.available | 2019-01-22T20:33:18Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0022-4812 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/147689 | |
dc.description.abstract | © 2018 The Association for Symbolic Logic. A Turing degree d is the degree of categoricity of a computable structure S if d is the least degree capable of computing isomorphisms among arbitrary computable copies of S. A degree d is the strong degree of categoricity of S if d is the degree of categoricity of S, and there are computable copies A and B of S such that every isomorphism from A onto B computes d. In this paper, we build a c.e. degree d and a computable rigid structure Msuch that d is the degree of categoricity of M, but d is not the strong degree of categoricity of M. This solves the open problem of Fokina, Kalimullin, andMiller [13]. For a computable structure S, we introduce the notion of the spectral dimension of S, which gives a quantitative characteristic of the degree of categoricity of S. We prove that for a nonzero natural number N, there is a computable rigid structureMsuch that 0 is the degree of categoricity ofM, and the spectral dimension ofMis equal to N. | |
dc.relation.ispartofseries | Journal of Symbolic Logic | |
dc.subject | categoricity spectrum | |
dc.subject | computable categoricity | |
dc.subject | degree of categoricity | |
dc.subject | rigid structure | |
dc.title | Degrees of categoricity and spectral dimension | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 83 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 103 | |
dc.source.id | SCOPUS00224812-2018-83-1-SID85046365456 |