dc.contributor.author |
Avkhadiev F. |
|
dc.date.accessioned |
2019-01-22T20:33:01Z |
|
dc.date.available |
2019-01-22T20:33:01Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
0022-247X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/147668 |
|
dc.description.abstract |
© 2018 Elsevier Inc. We consider the Hardy inequality in canonical doubly connected plane domains. For any annulus A we determine sharp Hardy's constant c2(A) in function of conformal modulus M(A). Namely, for any annulus A with fixed conformal modulus M(A)=M we prove that c2(A)={1/4,if M∈(0,M⁎];γ(2−γ)/4,if M∈(M⁎,∞), where γ=γ(M)∈(1,2). The critical modulus M⁎≈0.57298 and the values of γ(M) are found as roots of certain equations, containing the Gauss hypergeometric functions. In particular, we show that the sharp Hardy constants c2(A) depend on M continuously and that they tend to zero as M→∞. In addition, we describe an application of results to a Rellich type inequality. |
|
dc.relation.ispartofseries |
Journal of Mathematical Analysis and Applications |
|
dc.subject |
Conformal modulus |
|
dc.subject |
Hardy inequality |
|
dc.subject |
Hypergeometric function |
|
dc.subject |
Rellich type inequality |
|
dc.title |
Sharp Hardy constants for annuli |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
466 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
936 |
|
dc.source.id |
SCOPUS0022247X-2018-466-1-SID85048730026 |
|