Показать сокращенную информацию
dc.contributor.author | Kayumov I. | |
dc.contributor.author | Ponnusamy S. | |
dc.date.accessioned | 2019-01-22T20:33:00Z | |
dc.date.available | 2019-01-22T20:33:00Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/147667 | |
dc.description.abstract | © 2018 Elsevier Inc. We determine the Bohr radius for the class of all functions f of the form f(z)=zm∑k=0∞akpzkp analytic in the unit disk |z|<1 and satisfy the condition |f(z)|≤1 for all |z|<1. In particular, our result also contains a solution to a recent conjecture of Ali et al. [9] for the Bohr radius for odd analytic functions, solved by the authors in [17]. We consider a more flexible approach by introducing the p-Bohr radius for harmonic functions which in turn contains the classical Bohr radius as special case. Also, we prove several other new results and discuss p-Bohr radius for the class of odd harmonic bounded functions. | |
dc.relation.ispartofseries | Journal of Mathematical Analysis and Applications | |
dc.subject | Bohr's inequality | |
dc.subject | Harmonic functions | |
dc.subject | p-Symmetric functions | |
dc.subject | Schwarz lemma | |
dc.subject | Subordination | |
dc.title | Bohr's inequalities for the analytic functions with lacunary series and harmonic functions | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 465 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 857 | |
dc.source.id | SCOPUS0022247X-2018-465-2-SID85045682303 |