dc.contributor.author |
Kayumov I. |
|
dc.contributor.author |
Ponnusamy S. |
|
dc.date.accessioned |
2019-01-22T20:33:00Z |
|
dc.date.available |
2019-01-22T20:33:00Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
0022-247X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/147667 |
|
dc.description.abstract |
© 2018 Elsevier Inc. We determine the Bohr radius for the class of all functions f of the form f(z)=zm∑k=0∞akpzkp analytic in the unit disk |z|<1 and satisfy the condition |f(z)|≤1 for all |z|<1. In particular, our result also contains a solution to a recent conjecture of Ali et al. [9] for the Bohr radius for odd analytic functions, solved by the authors in [17]. We consider a more flexible approach by introducing the p-Bohr radius for harmonic functions which in turn contains the classical Bohr radius as special case. Also, we prove several other new results and discuss p-Bohr radius for the class of odd harmonic bounded functions. |
|
dc.relation.ispartofseries |
Journal of Mathematical Analysis and Applications |
|
dc.subject |
Bohr's inequality |
|
dc.subject |
Harmonic functions |
|
dc.subject |
p-Symmetric functions |
|
dc.subject |
Schwarz lemma |
|
dc.subject |
Subordination |
|
dc.title |
Bohr's inequalities for the analytic functions with lacunary series and harmonic functions |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
465 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
857 |
|
dc.source.id |
SCOPUS0022247X-2018-465-2-SID85045682303 |
|