dc.contributor.author |
Goyal A. |
|
dc.contributor.author |
Stawarz |
|
dc.contributor.author |
Zola S. |
|
dc.contributor.author |
Marchenko V. |
|
dc.contributor.author |
Soida M. |
|
dc.contributor.author |
Nilsson K. |
|
dc.contributor.author |
Ciprini S. |
|
dc.contributor.author |
Baran A. |
|
dc.contributor.author |
Ostrowski M. |
|
dc.contributor.author |
Wiita P. |
|
dc.contributor.author |
Gopal-Krishna |
|
dc.contributor.author |
Siemiginowska A. |
|
dc.contributor.author |
Sobolewska M. |
|
dc.contributor.author |
Jorstad S. |
|
dc.contributor.author |
Marscher A. |
|
dc.contributor.author |
Aller M. |
|
dc.contributor.author |
Aller H. |
|
dc.contributor.author |
Hovatta T. |
|
dc.contributor.author |
Caton D. |
|
dc.contributor.author |
Reichart D. |
|
dc.contributor.author |
Matsumoto K. |
|
dc.contributor.author |
Sadakane K. |
|
dc.contributor.author |
Gazeas K. |
|
dc.contributor.author |
Kidger M. |
|
dc.contributor.author |
Piirola V. |
|
dc.contributor.author |
Jermak H. |
|
dc.contributor.author |
Alicavus F. |
|
dc.contributor.author |
Baliyan K. |
|
dc.contributor.author |
Baransky A. |
|
dc.contributor.author |
Berdyugin A. |
|
dc.contributor.author |
Blay P. |
|
dc.contributor.author |
Boumis P. |
|
dc.contributor.author |
Boyd D. |
|
dc.contributor.author |
Bufan Y. |
|
dc.contributor.author |
Torrent M. |
|
dc.contributor.author |
Campos F. |
|
dc.contributor.author |
Gómez J. |
|
dc.contributor.author |
Dalessio J. |
|
dc.contributor.author |
Debski B. |
|
dc.contributor.author |
Dimitrov D. |
|
dc.contributor.author |
Drozdz M. |
|
dc.contributor.author |
Er H. |
|
dc.contributor.author |
Erdem A. |
|
dc.contributor.author |
Pérez A. |
|
dc.contributor.author |
Ramazani V. |
|
dc.contributor.author |
Filippenko A. |
|
dc.contributor.author |
Gafton E. |
|
dc.contributor.author |
Garcia F. |
|
dc.contributor.author |
Godunova V. |
|
dc.contributor.author |
Pinilla F. |
|
dc.contributor.author |
Gopinathan M. |
|
dc.contributor.author |
Haislip J. |
|
dc.contributor.author |
Haque S. |
|
dc.contributor.author |
Harmanen J. |
|
dc.contributor.author |
Hudec R. |
|
dc.contributor.author |
Hurst G. |
|
dc.contributor.author |
Ivarsen K. |
|
dc.contributor.author |
Joshi A. |
|
dc.contributor.author |
Kagitani M. |
|
dc.contributor.author |
Karaman N. |
|
dc.contributor.author |
Karjalainen R. |
|
dc.contributor.author |
Kaur N. |
|
dc.contributor.author |
Kozieł-Wierzbowska D. |
|
dc.contributor.author |
Kuligowska E. |
|
dc.contributor.author |
Kundera T. |
|
dc.contributor.author |
Kurowski S. |
|
dc.contributor.author |
Kvammen A. |
|
dc.contributor.author |
Lacluyze A. |
|
dc.contributor.author |
Lee B. |
|
dc.contributor.author |
Liakos A. |
|
dc.contributor.author |
Haro J. |
|
dc.contributor.author |
Moore J. |
|
dc.contributor.author |
Mugrauer M. |
|
dc.contributor.author |
Nogues R. |
|
dc.contributor.author |
Neely A. |
|
dc.contributor.author |
Ogloza W. |
|
dc.contributor.author |
Okano S. |
|
dc.contributor.author |
Pajdosz U. |
|
dc.contributor.author |
Pandey J. |
|
dc.contributor.author |
Perri M. |
|
dc.contributor.author |
Poyner G. |
|
dc.contributor.author |
Provencal J. |
|
dc.contributor.author |
Pursimo T. |
|
dc.contributor.author |
Raj A. |
|
dc.contributor.author |
Rajkumar B. |
|
dc.contributor.author |
Reinthal R. |
|
dc.contributor.author |
Reynolds T. |
|
dc.contributor.author |
Saario J. |
|
dc.contributor.author |
Sadegi S. |
|
dc.date.accessioned |
2019-01-22T20:31:46Z |
|
dc.date.available |
2019-01-22T20:31:46Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
0004-637X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/147576 |
|
dc.description.abstract |
© 2018. The American Astronomical Society. All rights reserved.. We present the results of our power spectral density analysis for the BL Lac object OJ 287, utilizing the Fermi-LAT survey at high-energy γ-rays, Swift-XRT in X-rays, several ground-based telescopes and the Kepler satellite in the optical, and radio telescopes at GHz frequencies. The light curves are modeled in terms of continuous-time autoregressive moving average (CARMA) processes. Owing to the inclusion of the Kepler data, we were able to construct for the first time the optical variability power spectrum of a blazar without any gaps across ∼6 dex in temporal frequencies. Our analysis reveals that the radio power spectra are of a colored-noise type on timescales ranging from tens of years down to months, with no evidence for breaks or other spectral features. The overall optical power spectrum is also consistent with a colored noise on the variability timescales ranging from 117 years down to hours, with no hints of any quasi-periodic oscillations. The X-ray power spectrum resembles the radio and optical power spectra on the analogous timescales ranging from tens of years down to months. Finally, the γ-ray power spectrum is noticeably different from the radio, optical, and X-ray power spectra of the source: we have detected a characteristic relaxation timescale in the Fermi-LAT data, corresponding to ∼150 days, such that on timescales longer than this, the power spectrum is consistent with uncorrelated (white) noise, while on shorter variability timescales there is correlated (colored) noise. |
|
dc.relation.ispartofseries |
Astrophysical Journal |
|
dc.subject |
acceleration of particles |
|
dc.subject |
BL Lacertae objects: individual (OJ 287) |
|
dc.subject |
galaxies: active |
|
dc.subject |
magnetic fields |
|
dc.subject |
radiation mechanisms: non-thermal |
|
dc.title |
Stochastic Modeling of Multiwavelength Variability of the Classical BL Lac Object OJ 287 on Timescales Ranging from Decades to Hours |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
863 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.source.id |
SCOPUS0004637X-2018-863-2-SID85052370335 |
|