Показать сокращенную информацию
dc.contributor.author | Aksent'ev L. | |
dc.contributor.author | Akhmetova A. | |
dc.date.accessioned | 2018-09-21T20:01:01Z | |
dc.date.available | 2018-09-21T20:01:01Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 0001-4346 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/146277 | |
dc.description.abstract | We establish a criterion for the gradient ∇R(D, z) of the conformal radius of a convex domain D to be conformal: the boundary ∂D must be a circle. We obtain estimates for the coefficients K(r) for the K(r)-quasiconformal mappings ∇R(D, z), D(r) ⊂ D, 0 < r < 1, and supplement the results of Avkhadiev and Wirths concerning the structure of the boundary under diffeomorphic mappings of the domain D. © Pleiades Publishing, Ltd., 2010. | |
dc.relation.ispartofseries | Mathematical Notes | |
dc.subject | Astroid | |
dc.subject | Coefficient of quasiconformality | |
dc.subject | Conformal radius | |
dc.subject | Convex mapping | |
dc.subject | Cycloid | |
dc.subject | Gradient of the conformal radius | |
dc.subject | Hypocycloid | |
dc.title | On mappings related to the gradient of the conformal radius | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 87 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 3 | |
dc.source.id | SCOPUS00014346-2010-87-1-SID77949990169 |