dc.contributor.author |
Aksent'ev L. |
|
dc.contributor.author |
Akhmetova A. |
|
dc.date.accessioned |
2018-09-21T20:01:01Z |
|
dc.date.available |
2018-09-21T20:01:01Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
0001-4346 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/146277 |
|
dc.description.abstract |
We establish a criterion for the gradient ∇R(D, z) of the conformal radius of a convex domain D to be conformal: the boundary ∂D must be a circle. We obtain estimates for the coefficients K(r) for the K(r)-quasiconformal mappings ∇R(D, z), D(r) ⊂ D, 0 < r < 1, and supplement the results of Avkhadiev and Wirths concerning the structure of the boundary under diffeomorphic mappings of the domain D. © Pleiades Publishing, Ltd., 2010. |
|
dc.relation.ispartofseries |
Mathematical Notes |
|
dc.subject |
Astroid |
|
dc.subject |
Coefficient of quasiconformality |
|
dc.subject |
Conformal radius |
|
dc.subject |
Convex mapping |
|
dc.subject |
Cycloid |
|
dc.subject |
Gradient of the conformal radius |
|
dc.subject |
Hypocycloid |
|
dc.title |
On mappings related to the gradient of the conformal radius |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
87 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
3 |
|
dc.source.id |
SCOPUS00014346-2010-87-1-SID77949990169 |
|