Kazan Federal University Digital Repository

Thickness dependence of the triplet spin-valve effect in superconductor-ferromagnet-ferromagnet heterostructures

Show simple item record

dc.contributor.author Lenk D.
dc.contributor.author Zdravkov V.
dc.contributor.author Kehrle J.
dc.contributor.author Obermeier G.
dc.contributor.author Ullrich A.
dc.contributor.author Morari R.
dc.contributor.author von Nidda H.
dc.contributor.author Müller C.
dc.contributor.author Kupriyanov M.
dc.contributor.author Sidorenko A.
dc.contributor.author Horn S.
dc.contributor.author Deminov R.
dc.contributor.author Tagirov L.
dc.contributor.author Tidecks R.
dc.date.accessioned 2018-09-19T22:48:05Z
dc.date.available 2018-09-19T22:48:05Z
dc.date.issued 2016
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/145533
dc.description.abstract © 2016 Lenk et al.Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature Tc, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment. Results: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoOx an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoOx and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, dF1, of F1 and was found to decay with increasing dF1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory. Conclusion: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance dF1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for dF1 smaller than 0.3 to 0.4 times the magnetic coherence length, ζF1.
dc.subject Heterostructures
dc.subject Superconducting spin valve
dc.subject Thin films
dc.subject Triplet superconductivity
dc.title Thickness dependence of the triplet spin-valve effect in superconductor-ferromagnet-ferromagnet heterostructures
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 7
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 957
dc.source.id SCOPUS-2016-7-1-SID84993973271


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics