Электронный архив

Pseudo-bimodal community detection in Twitter-based networks

Показать сокращенную информацию

dc.contributor.author Semenov A.
dc.contributor.author Zakhlebin I.
dc.contributor.author Tolmach A.
dc.contributor.author Nikolenko S.
dc.date.accessioned 2018-09-19T22:46:55Z
dc.date.available 2018-09-19T22:46:55Z
dc.date.issued 2016
dc.identifier.issn 2157-0221
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/145502
dc.description.abstract © 2016 IEEE.We present a novel approach to clustering Twitter users and characterizing their preferences (political or otherwise) based on the features of communication networks extracted from their tweets. We make the assumption that central users in the network, the so-called 'top', or 'power' users, set the agenda, while other, 'regular' users often retweet and/or mention their tweets, and behavior towards 'top' users differs from the behaviour of 'regular' users towards each other. We show that network clustering on Twitter can be observed more distinctively on unimodal projections of specially created bimodal networks (bipartite graphs), where top users in the networks are artificially separated into a second part according to node centrality measures. We evaluate our approach on Twitter-based datasets of mentions and retweets related to Russian political protests and a benchmark English-language Twitter dataset with distinctly polarized clusters; we compare various centrality measures and show that our algorithm yields high modularity in the resulting community structure.
dc.relation.ispartofseries International Congress on Ultra Modern Telecommunications and Control Systems and Workshops
dc.title Pseudo-bimodal community detection in Twitter-based networks
dc.type Conference Paper
dc.relation.ispartofseries-volume 2016-December
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 336
dc.source.id SCOPUS21570221-2016-2016-SID85006810906


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика