Показать сокращенную информацию
dc.contributor.author | Ablayev F. | |
dc.contributor.author | Gainutdinova A. | |
dc.contributor.author | Khadiev K. | |
dc.contributor.author | Yakaryılmaz A. | |
dc.date.accessioned | 2018-09-19T22:10:47Z | |
dc.date.available | 2018-09-19T22:10:47Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/144820 | |
dc.description.abstract | © 2016, Pleiades Publishing, Ltd.In the paper we investigate Ordered Binary Decision Diagrams (OBDDs)–a model for computing Boolean functions. We present a series of results on the comparative complexity for several variants of OBDDmodels. • We present results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2k+1. • We consider quantum and classical nondeterminism. We show that quantum nondeterminismcan bemore efficient than classical nondeterminism. In particular, an explicit function is presented that is computed by a quantum nondeterministic OBDD of constant width but any classical nondeterministic OBDD for this function needs non-constant width. • We also present new hierarchies on widths of deterministic and nondeterministic OBDDs. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.subject | nondeterminism | |
dc.subject | OBDD | |
dc.subject | partial functions | |
dc.subject | quantum computation | |
dc.subject | width hierarchy | |
dc.title | Very narrow quantum OBDDs and width hierarchies for classical OBDDs | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 37 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 670 | |
dc.source.id | SCOPUS19950802-2016-37-6-SID84994517753 |