dc.contributor.author |
Ablayev F. |
|
dc.contributor.author |
Gainutdinova A. |
|
dc.contributor.author |
Khadiev K. |
|
dc.contributor.author |
Yakaryılmaz A. |
|
dc.date.accessioned |
2018-09-19T22:10:47Z |
|
dc.date.available |
2018-09-19T22:10:47Z |
|
dc.date.issued |
2016 |
|
dc.identifier.issn |
1995-0802 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/144820 |
|
dc.description.abstract |
© 2016, Pleiades Publishing, Ltd.In the paper we investigate Ordered Binary Decision Diagrams (OBDDs)–a model for computing Boolean functions. We present a series of results on the comparative complexity for several variants of OBDDmodels. • We present results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2k+1. • We consider quantum and classical nondeterminism. We show that quantum nondeterminismcan bemore efficient than classical nondeterminism. In particular, an explicit function is presented that is computed by a quantum nondeterministic OBDD of constant width but any classical nondeterministic OBDD for this function needs non-constant width. • We also present new hierarchies on widths of deterministic and nondeterministic OBDDs. |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.subject |
nondeterminism |
|
dc.subject |
OBDD |
|
dc.subject |
partial functions |
|
dc.subject |
quantum computation |
|
dc.subject |
width hierarchy |
|
dc.title |
Very narrow quantum OBDDs and width hierarchies for classical OBDDs |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
6 |
|
dc.relation.ispartofseries-volume |
37 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
670 |
|
dc.source.id |
SCOPUS19950802-2016-37-6-SID84994517753 |
|