Показать сокращенную информацию
dc.contributor.author | Lapin A. | |
dc.contributor.author | Laitinen E. | |
dc.date.accessioned | 2018-09-19T22:10:27Z | |
dc.date.available | 2018-09-19T22:10:27Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/144809 | |
dc.description.abstract | © 2016, Pleiades Publishing, Ltd.Iterative solution method for mesh approximation of an optimal control problem of a system governed by a linear parabolic equation is constructed and investigated. Control functions of the problem are in the right-hand side of the equation and in Neumann boundary condition, observation is in a part of the domain. Constraints on the control functions, state function and its time derivative are imposed. A mesh saddle point problem is constructed and preconditioned Uzawa-type method is applied to its solution. The main advantage of the iterative method is its effective implementation: every iteration step consists of the pointwise projections onto the segments and solving the linear mesh parabolic equations. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.subject | iterative method | |
dc.subject | mesh approximation | |
dc.subject | Parabolic optimal control problem | |
dc.subject | saddle point problem | |
dc.subject | state constraints | |
dc.title | Preconditioned Uzawa-type method for a state constrained parabolic optimal control problem with boundary control | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 5 | |
dc.relation.ispartofseries-volume | 37 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 561 | |
dc.source.id | SCOPUS19950802-2016-37-5-SID84987901623 |