dc.contributor.author |
Bazhenov N. |
|
dc.date.accessioned |
2018-09-19T21:59:16Z |
|
dc.date.available |
2018-09-19T21:59:16Z |
|
dc.date.issued |
2016 |
|
dc.identifier.issn |
0039-3215 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/144562 |
|
dc.description.abstract |
© 2016 Springer Science+Business Media DordrechtWe investigate effective categoricity for polymodal algebras (i.e., Boolean algebras with distinguished modalities). We prove that the class of polymodal algebras is complete with respect to degree spectra of nontrivial structures, effective dimensions, expansion by constants, and degree spectra of relations. In particular, this implies that every categoricity spectrum is the categoricity spectrum of a polymodal algebra. |
|
dc.relation.ispartofseries |
Studia Logica |
|
dc.subject |
Autostability spectrum |
|
dc.subject |
Boolean algebra with operators |
|
dc.subject |
Categoricity spectrum |
|
dc.subject |
Degree spectrum |
|
dc.subject |
Polymodal algebra |
|
dc.subject |
Turing computable embedding |
|
dc.title |
Categoricity Spectra for Polymodal Algebras |
|
dc.type |
Article in Press |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1 |
|
dc.source.id |
SCOPUS00393215-2016-SID84961215297 |
|