Электронный архив

Identifying product failures from reviews in noisy data by distant supervision

Показать сокращенную информацию

dc.contributor.author Tutubalina E.
dc.date.accessioned 2018-09-19T21:50:36Z
dc.date.available 2018-09-19T21:50:36Z
dc.date.issued 2016
dc.identifier.issn 1865-0929
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/144411
dc.description.abstract © Springer International Publishing Switzerland 2016.Product reviews contain valuable information regarding customer satisfaction with products. Analysis of a large number of user requirements attracts interest of researchers. We present a comparative study of distantly supervised methods for extraction of user complaints from product reviews. We investigate the use of noisy labeled data for training classifiers and extracting scores for an automatically created lexicon to extract features. Several methods for label assignment were evaluated including keywords, syntactic patterns, and weakly supervised topic models. Experimental results using two real-world review datasets about automobiles and mobile applications show that distantly supervised classifiers outperform strong baselines.
dc.relation.ispartofseries Communications in Computer and Information Science
dc.subject Distant supervision
dc.subject Opinion mining
dc.subject Problem phrase extraction
dc.subject Product defects
dc.title Identifying product failures from reviews in noisy data by distant supervision
dc.type Conference Paper
dc.relation.ispartofseries-volume 649
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 142
dc.source.id SCOPUS18650929-2016-649-SID84988646167


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика