Kazan Federal University Digital Repository

Approximation of operator eigenvalue problems in a Hilbert space

Show simple item record

dc.contributor.author Solovyev S.
dc.date.accessioned 2018-09-19T21:43:29Z
dc.date.available 2018-09-19T21:43:29Z
dc.date.issued 2016
dc.identifier.issn 1757-8981
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/144328
dc.description.abstract © Published under licence by IOP Publishing Ltd.The eigenvalue problem for a compact symmetric positive definite operator in an infinite-dimensional Hilbert space is approximated by an operator eigenvalue problem in finitedimensional subspace. Error estimates for the approximate eigenvalues and eigenelements are established. These results can be applied for investigating the finite element method with numerical integration for differential eigenvalue problems.
dc.relation.ispartofseries IOP Conference Series: Materials Science and Engineering
dc.title Approximation of operator eigenvalue problems in a Hilbert space
dc.type Conference Paper
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 158
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS17578981-2016-158-1-SID85014360732


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics