Электронный архив

Algorithms of parametric estimation of polynomial trend models of time series on discrete transforms

Показать сокращенную информацию

dc.contributor.author Ismagilov I.
dc.contributor.author Khasanova S.
dc.date.accessioned 2018-09-19T21:28:20Z
dc.date.available 2018-09-19T21:28:20Z
dc.date.issued 2016
dc.identifier.issn 1544-1458
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/144035
dc.description.abstract A forecasting of economic and financial indicators is the actual problem of strategic management. A time series forecasting often uses simple econometric models. The trend and seasonal trend models are among the popular models for forecasting. In some cases researchers need to analyze vector time series. The traditional algorithms of estimating time series models may be associated with a sufficiently high computational complexity. We propose the applications of oblique discrete Walsh transform to the synthesis of estimation algorithms of polynomial trend models' parameters of time series. Algorithms evaluate polynomial models that not above the third degree in a non-orthogonal basis of discrete exponential functions and orthogonal basis of discrete Chebyshev polynomials. The advantage of these algorithms is the computational efficiency, which associated with a significant reduction of the multiplicative complexity of algorithms in comparing with direct estimation of polynomial trend models.
dc.relation.ispartofseries Academy of Strategic Management Journal
dc.subject Discrete transforms
dc.subject Oblique discrete walsh transformations
dc.subject Parametric estimation
dc.subject Polynomial trend models
dc.subject Time series
dc.title Algorithms of parametric estimation of polynomial trend models of time series on discrete transforms
dc.type Article
dc.relation.ispartofseries-issue SpecialIssue
dc.relation.ispartofseries-volume 15
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 21
dc.source.id SCOPUS15441458-2016-15--SID85017236963


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика