Показать сокращенную информацию
dc.contributor.author | Chuprunov A. | |
dc.contributor.author | Alsaied G. | |
dc.contributor.author | Alkhuzani M. | |
dc.date.accessioned | 2018-09-19T20:56:08Z | |
dc.date.available | 2018-09-19T20:56:08Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/143443 | |
dc.description.abstract | © 2017, Allerton Press, Inc.We deal with analogs of multicolor urn schemes such that the number of particles is not more than a given number. We introduce conditions which provide the convergence of random variables which is the maximal number of taken particles of the same color to a random variable that has values zero and one. We prove this convergence in the case when a number of taken particles is not more than a fixed number and number of colors converges to infinity. We also consider the case when the number of taken particles converges to infinity. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | allocation of particles to cells | |
dc.subject | binomial random variable | |
dc.subject | limit theorem | |
dc.subject | Poisson random variable | |
dc.subject | urn scheme | |
dc.title | On maximal quantity of particles of one color in analogs of multicolor urn schemes | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 61 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 83 | |
dc.source.id | SCOPUS1066369X-2017-61-7-SID85019640483 |