Kazan Federal University Digital Repository

Inner derivations of simple Lie pencils of rank 1

Show simple item record

dc.contributor.author Koreshkov N.
dc.date.accessioned 2018-09-19T20:55:51Z
dc.date.available 2018-09-19T20:55:51Z
dc.date.issued 2017
dc.identifier.issn 1066-369X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/143433
dc.description.abstract © 2017, Allerton Press, Inc.We prove that simple Lie pencils of rank 1 over an algebraically closed field P of characteristic 0 with operators of left multiplication being derivations are of the form of a sandwich algebra M3(U,D′), where U is the subspace of all skew-symmetric matrices in M3(P) and D′ is any subspace containing 〈E〉 in the space of all diagonal matrices D in M3(P).
dc.relation.ispartofseries Russian Mathematics
dc.subject Cartan subalgebra
dc.subject inner derivation
dc.subject Lie pencil
dc.subject sandwich algebra
dc.subject torus
dc.title Inner derivations of simple Lie pencils of rank 1
dc.type Article
dc.relation.ispartofseries-issue 4
dc.relation.ispartofseries-volume 61
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 11
dc.source.id SCOPUS1066369X-2017-61-4-SID85016755831


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics