Показать сокращенную информацию
dc.contributor.author | Koreshkov N. | |
dc.date.accessioned | 2018-09-19T20:55:51Z | |
dc.date.available | 2018-09-19T20:55:51Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/143433 | |
dc.description.abstract | © 2017, Allerton Press, Inc.We prove that simple Lie pencils of rank 1 over an algebraically closed field P of characteristic 0 with operators of left multiplication being derivations are of the form of a sandwich algebra M3(U,D′), where U is the subspace of all skew-symmetric matrices in M3(P) and D′ is any subspace containing 〈E〉 in the space of all diagonal matrices D in M3(P). | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | Cartan subalgebra | |
dc.subject | inner derivation | |
dc.subject | Lie pencil | |
dc.subject | sandwich algebra | |
dc.subject | torus | |
dc.title | Inner derivations of simple Lie pencils of rank 1 | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 61 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 11 | |
dc.source.id | SCOPUS1066369X-2017-61-4-SID85016755831 |