dc.contributor.author |
Koreshkov N. |
|
dc.date.accessioned |
2018-09-19T20:55:51Z |
|
dc.date.available |
2018-09-19T20:55:51Z |
|
dc.date.issued |
2017 |
|
dc.identifier.issn |
1066-369X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/143433 |
|
dc.description.abstract |
© 2017, Allerton Press, Inc.We prove that simple Lie pencils of rank 1 over an algebraically closed field P of characteristic 0 with operators of left multiplication being derivations are of the form of a sandwich algebra M3(U,D′), where U is the subspace of all skew-symmetric matrices in M3(P) and D′ is any subspace containing 〈E〉 in the space of all diagonal matrices D in M3(P). |
|
dc.relation.ispartofseries |
Russian Mathematics |
|
dc.subject |
Cartan subalgebra |
|
dc.subject |
inner derivation |
|
dc.subject |
Lie pencil |
|
dc.subject |
sandwich algebra |
|
dc.subject |
torus |
|
dc.title |
Inner derivations of simple Lie pencils of rank 1 |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
4 |
|
dc.relation.ispartofseries-volume |
61 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
11 |
|
dc.source.id |
SCOPUS1066369X-2017-61-4-SID85016755831 |
|