Показать сокращенную информацию
dc.contributor.author | Onegov L. | |
dc.date.accessioned | 2018-09-19T20:54:58Z | |
dc.date.available | 2018-09-19T20:54:58Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/143420 | |
dc.description.abstract | © 2016, Allerton Press, Inc.We investigate the method of mechanical quadratures for integral equations with fixed singularity. We establish estimates of the error of this method based on a quadrature process, which is the best in the class of differentiable functions. We prove the convergence of the method in finite-dimensional and uniform metrics. We find that the investigated quadrature method is optimal by order on the Hölder class of functions. | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | accuracy | |
dc.subject | convergence | |
dc.subject | integral equation | |
dc.subject | optimality | |
dc.subject | quadrature process | |
dc.subject | solution | |
dc.title | The method of mechanical quadratures for integral equations with fixed singularity | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 60 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 71 | |
dc.source.id | SCOPUS1066369X-2016-60-7-SID84975804511 |