Show simple item record

dc.contributor.author Ivrii O.
dc.contributor.author Kayumov I.
dc.date.accessioned 2018-09-19T20:53:49Z
dc.date.available 2018-09-19T20:53:49Z
dc.date.issued 2017
dc.identifier.issn 1064-5616
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/143389
dc.description.abstract © 2017 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.Makarov's principle relates three characteristics of Bloch functions that resemble the variance of a Gaussian: asymptotic variance, the constant in Makarov's law of iterated logarithm and the second derivative of the integral means spectrum at the origin. While these quantities need not be equal in general, we show that the universal bounds agree if we take the supremum over the Bloch unit ball. For the supremum (of either of these quantities), we give the estimate ΣB2 < min(0.9,Σ2), where Σ2 is the analogous quantity associated to the unit ball in the L∞ norm on the Bloch space. This improves on the upper bound in Pommerenke's estimate 0.6852 < ΣB2 ≤ 1.
dc.relation.ispartofseries Sbornik Mathematics
dc.subject Bergman projection
dc.subject Bloch space
dc.subject Integral means spectrum
dc.subject Law of the iterated logarithm
dc.title Makarov's principle for the Bloch unit ball
dc.type Article
dc.relation.ispartofseries-issue 3
dc.relation.ispartofseries-volume 208
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 399
dc.source.id SCOPUS10645616-2017-208-3-SID85020080810


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics