Показать сокращенную информацию
dc.contributor.author | Al'pin Y. | |
dc.contributor.author | Al'pina V. | |
dc.date.accessioned | 2018-09-19T20:53:48Z | |
dc.date.available | 2018-09-19T20:53:48Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1064-5616 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/143388 | |
dc.description.abstract | © 2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.Protasov's Theorem on the combinatorial structure of k-primitive families of non-negative matrices is generalized to k-semiprimitive matrix families. The main tool is the binary relation of colour compatibility on the vertices of the coloured graph of the matrix family. Bibliography: 14 titles. | |
dc.relation.ispartofseries | Sbornik Mathematics | |
dc.subject | Coloured graphs | |
dc.subject | Nonnegative matrices | |
dc.subject | Perron-frobenius theorem | |
dc.title | Combinatorial structure of k-semiprimitive matrix families | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 5 | |
dc.relation.ispartofseries-volume | 207 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 639 | |
dc.source.id | SCOPUS10645616-2016-207-5-SID84979657033 |