dc.contributor.author |
Al'pin Y. |
|
dc.contributor.author |
Al'pina V. |
|
dc.date.accessioned |
2018-09-19T20:53:48Z |
|
dc.date.available |
2018-09-19T20:53:48Z |
|
dc.date.issued |
2016 |
|
dc.identifier.issn |
1064-5616 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/143388 |
|
dc.description.abstract |
© 2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.Protasov's Theorem on the combinatorial structure of k-primitive families of non-negative matrices is generalized to k-semiprimitive matrix families. The main tool is the binary relation of colour compatibility on the vertices of the coloured graph of the matrix family. Bibliography: 14 titles. |
|
dc.relation.ispartofseries |
Sbornik Mathematics |
|
dc.subject |
Coloured graphs |
|
dc.subject |
Nonnegative matrices |
|
dc.subject |
Perron-frobenius theorem |
|
dc.title |
Combinatorial structure of k-semiprimitive matrix families |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
5 |
|
dc.relation.ispartofseries-volume |
207 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
639 |
|
dc.source.id |
SCOPUS10645616-2016-207-5-SID84979657033 |
|