Kazan Federal University Digital Repository

A sentiment-aware topic model for extracting failures from product reviews

Show simple item record

dc.contributor.author Tutubalina E.
dc.date.accessioned 2018-09-19T20:29:43Z
dc.date.available 2018-09-19T20:29:43Z
dc.date.issued 2016
dc.identifier.issn 0302-9743
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/142958
dc.description.abstract © Springer International Publishing Switzerland 2016.This paper describes a probabilistic model that aims to extract different kinds of product difficulties conditioned on users’ dissatisfaction through the use of sentiment information. The proposed model learns a distribution over words, associated with topics, sentiment and problem labels. The results were evaluated on reviews of products, randomly sampled from several domains (automobiles, home tools, electronics, and baby products), and user comments about mobile applications, in English and Russian. The model obtains a better performance than several state-of-the-art models in terms of the likelihood of a held-out test and outperforms these models in a classification task.
dc.relation.ispartofseries Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.title A sentiment-aware topic model for extracting failures from product reviews
dc.type Chapter
dc.relation.ispartofseries-volume 9924
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 37
dc.source.id SCOPUS03029743-2016-9924-SID85008354466


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics