dc.contributor.author |
Kharlamova A. |
|
dc.contributor.author |
Lushchekina S. |
|
dc.contributor.author |
Petrov K. |
|
dc.contributor.author |
Kots E. |
|
dc.contributor.author |
Nachon F. |
|
dc.contributor.author |
Villard-Wandhammer M. |
|
dc.contributor.author |
Zueva I. |
|
dc.contributor.author |
Krejci E. |
|
dc.contributor.author |
Reznik V. |
|
dc.contributor.author |
Zobov V. |
|
dc.contributor.author |
Nikolsky E. |
|
dc.contributor.author |
Masson P. |
|
dc.date.accessioned |
2018-09-19T20:27:02Z |
|
dc.date.available |
2018-09-19T20:27:02Z |
|
dc.date.issued |
2016 |
|
dc.identifier.issn |
0264-6021 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/142913 |
|
dc.description.abstract |
© 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.Inhibition of human AChE (acetylcholinesterase) and BChE (butyrylcholinesterase) by an alkylammonium derivative of 6-methyluracil, C-547, a potential drug for the treatment of MG (myasthenia gravis) was studied. Kinetic analysis of AChE inhibition showed that C-547 is a slow-binding inhibitor of type B, i.e. after formation of the initial enzyme•inhibitor complex (Ki = 140 pM), an induced-fit step allows establishment of the final complex (Ki = 22 pM). The estimated koff is low, 0.05 -1 . On the other hand, reversible inhibition of human BChE is a fast-binding process of mixed-type (Ki = 1.77 μM; Ki = 3.17 μM). The crystal structure of mouse AChE complexed with C-547 was solved at 3.13 Å resolution. The complex is stabilized by cation-π , stacking and hydrogenbonding interactions. Molecular dynamics simulations of the binding/dissociation processes of C-547 and C-35 (a noncharged analogue) to mouse and human AChEs were performed. Molecular modelling on mouse and human AChE showed that the slow step results from an enzyme conformational change that allows C-547 to cross the bottleneck in the active-site gorge, followed by formation of tight complex, as observed in the crystal structure. In contrast, the related non-charged compound C-35 is not a slow-binding inhibitor. It does not cross the bottleneck because it is not sensitive to the electrostatic driving force to reach the bottom of the gorge. Thus C-547 is one of the most potent and selective reversible inhibitors of AChE with a long residence time, τ; = 20 min, longer than for other reversible inhibitors used in the treatment of MG. This makes C-547 a promising drug for the treatment of this disease. |
|
dc.relation.ispartofseries |
Biochemical Journal |
|
dc.subject |
6-methyluracil |
|
dc.subject |
Acetylcholinesterase |
|
dc.subject |
Butyrylcholinesterase |
|
dc.subject |
Molecular modelling |
|
dc.subject |
Slow-binding inhibition |
|
dc.subject |
X-ray structure. |
|
dc.title |
Slow-binding inhibition of acetylcholinesterase by an alkylammonium derivative of 6-methyluracil: Mechanism and possible advantages for myasthenia gravis treatment |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
9 |
|
dc.relation.ispartofseries-volume |
473 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1225 |
|
dc.source.id |
SCOPUS02646021-2016-473-9-SID84975318599 |
|