Электронный архив

Free Surface Flow in a Microfluidic Corner and in an Unconfined Aquifer with Accretion: The Signorini and Saint-Venant Analytical Techniques Revisited

Показать сокращенную информацию

dc.contributor.author Kacimov A.
dc.contributor.author Maklakov D.
dc.contributor.author Kayumov I.
dc.contributor.author Al-Futaisi A.
dc.date.accessioned 2018-09-19T20:23:59Z
dc.date.available 2018-09-19T20:23:59Z
dc.date.issued 2017
dc.identifier.issn 0169-3913
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/142865
dc.description.abstract © 2016, Springer Science+Business Media Dordrecht.Steady, laminar, fully developed flows of a Newtonian fluid driven by a constant pressure gradient in (1) a curvilinear constant cross section triangle bounded by two straight no-slip segments and a circular meniscus and (2) a wedge bounded by two rays and an adjacent film bulging near the corner are studied analytically by the theory of holomorphic functions and numerically by finite elements. The analytical solution of the first problem is obtained by reducing the Poisson equation for the longitudinal flow velocity to the Laplace equation, conformal mapping of the corresponding transformed physical domain onto an auxiliary half-plane and solving there the Signorini mixed boundary value problem (BVP). The numerical solution is obtained by meshing the circular sector and solving a system of linear equations ensuing from the Poisson equation. Comparisons are made with known solutions for flows in a rectangular conduit, circular annulus and Philip’s circular duct with a no-shear sector. Problem (2) is treated by the Saint-Venant semi-inverse method: the free surface (quasi-meniscus) is reconstructed by a one-parametric family, which specifies a holomorphic function of the first derivative of the physical coordinate with respect to an auxiliary variable. The latter maps the flow domain onto a quarter of a unit disc where a mixed BVP for a characteristic function is solved by the Zhukovsky–Chaplygin method. Velocity distributions in a cross section perpendicular to the flow direction are obtained. It is shown that the change of the type of the boundary condition from no slip to perfect slip (along the meniscus) causes a dramatic increase of the total flow rate (conductance). For example, the classical Saint-Venant formulae for a sector, with all three boundaries being no-slip segments, predict up to four times smaller rate as compared to a free surface meniscus. Mathematically equivalent problems of unconfined flows in aquifers recharged by a constant-intensity infiltration are also addressed.
dc.relation.ispartofseries Transport in Porous Media
dc.subject Meniscus
dc.subject Poisson equation
dc.subject Signorini formula
dc.subject Viscous film
dc.subject Zhukovsky–Chaplygin method
dc.subject Zunker’s pendular water slug
dc.title Free Surface Flow in a Microfluidic Corner and in an Unconfined Aquifer with Accretion: The Signorini and Saint-Venant Analytical Techniques Revisited
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 116
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 115
dc.source.id SCOPUS01693913-2017-116-1-SID84989169861


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика