Электронный архив

Neural networks for aerosol particles characterization

Показать сокращенную информацию

dc.contributor.author Berdnik V.
dc.contributor.author Loiko V.
dc.date.accessioned 2018-09-19T20:16:46Z
dc.date.available 2018-09-19T20:16:46Z
dc.date.issued 2016
dc.identifier.issn 0022-4073
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/142783
dc.description.abstract © 2016 Elsevier LtdMultilayer perceptron neural networks with one, two and three inputs are built to retrieve parameters of spherical homogeneous nonabsorbing particle. The refractive index ranges from 1.3 to 1.7; particle radius ranges from 0.251 μm to 56.234 μm. The logarithms of the scattered radiation intensity are used as input signals. The problem of the most informative scattering angles selection is elucidated. It is shown that polychromatic illumination helps one to increase significantly the retrieval accuracy. In the absence of measurement errors relative error of radius retrieval by the neural network with three inputs is 0.54%, relative error of the refractive index retrieval is 0.84%. The effect of measurement errors on the result of retrieval is simulated.
dc.relation.ispartofseries Journal of Quantitative Spectroscopy and Radiative Transfer
dc.subject Aerosols
dc.subject Light scattering
dc.subject Modeling
dc.subject Neural networks
dc.subject Particle characterization
dc.title Neural networks for aerosol particles characterization
dc.type Article
dc.relation.ispartofseries-volume 184
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 135
dc.source.id SCOPUS00224073-2016-184-SID84979608898


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика