Показать сокращенную информацию
dc.contributor.author | Berdnik V. | |
dc.contributor.author | Loiko V. | |
dc.date.accessioned | 2018-09-19T20:16:46Z | |
dc.date.available | 2018-09-19T20:16:46Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0022-4073 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/142783 | |
dc.description.abstract | © 2016 Elsevier LtdMultilayer perceptron neural networks with one, two and three inputs are built to retrieve parameters of spherical homogeneous nonabsorbing particle. The refractive index ranges from 1.3 to 1.7; particle radius ranges from 0.251 μm to 56.234 μm. The logarithms of the scattered radiation intensity are used as input signals. The problem of the most informative scattering angles selection is elucidated. It is shown that polychromatic illumination helps one to increase significantly the retrieval accuracy. In the absence of measurement errors relative error of radius retrieval by the neural network with three inputs is 0.54%, relative error of the refractive index retrieval is 0.84%. The effect of measurement errors on the result of retrieval is simulated. | |
dc.relation.ispartofseries | Journal of Quantitative Spectroscopy and Radiative Transfer | |
dc.subject | Aerosols | |
dc.subject | Light scattering | |
dc.subject | Modeling | |
dc.subject | Neural networks | |
dc.subject | Particle characterization | |
dc.title | Neural networks for aerosol particles characterization | |
dc.type | Article | |
dc.relation.ispartofseries-volume | 184 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 135 | |
dc.source.id | SCOPUS00224073-2016-184-SID84979608898 |