Показать сокращенную информацию
dc.contributor.author | Skryabin S. | |
dc.date.accessioned | 2018-09-19T20:13:10Z | |
dc.date.available | 2018-09-19T20:13:10Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0021-8693 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/142703 | |
dc.description.abstract | © 2017 Elsevier Inc.If H is a Hopf algebra and A an H-module algebra without nontrivial H-stable left or right ideals, then the subalgebra of H-invariant elements AH is a skew field and A may be regarded as a vector space over AH with respect to either left or right multiplications. It is proved in the paper that the left dimension of A over AH is equal to the right dimension under the assumptions that A is semiprimary and dimH<∞. In the case when A is itself a skew field, this answers a question raised by J. Bergen, M. Cohen and D. Fischman. | |
dc.relation.ispartofseries | Journal of Algebra | |
dc.subject | Hopf algebras | |
dc.subject | Hopf module algebras | |
dc.subject | Invariants | |
dc.subject | Skew fields | |
dc.title | The left and right dimensions of a skew field over the subfield of invariants | |
dc.type | Article | |
dc.relation.ispartofseries-volume | 482 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 248 | |
dc.source.id | SCOPUS00218693-2017-482-SID85017302812 |