dc.contributor.author |
Skryabin S. |
|
dc.date.accessioned |
2018-09-19T20:13:10Z |
|
dc.date.available |
2018-09-19T20:13:10Z |
|
dc.date.issued |
2017 |
|
dc.identifier.issn |
0021-8693 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/142703 |
|
dc.description.abstract |
© 2017 Elsevier Inc.If H is a Hopf algebra and A an H-module algebra without nontrivial H-stable left or right ideals, then the subalgebra of H-invariant elements AH is a skew field and A may be regarded as a vector space over AH with respect to either left or right multiplications. It is proved in the paper that the left dimension of A over AH is equal to the right dimension under the assumptions that A is semiprimary and dimH<∞. In the case when A is itself a skew field, this answers a question raised by J. Bergen, M. Cohen and D. Fischman. |
|
dc.relation.ispartofseries |
Journal of Algebra |
|
dc.subject |
Hopf algebras |
|
dc.subject |
Hopf module algebras |
|
dc.subject |
Invariants |
|
dc.subject |
Skew fields |
|
dc.title |
The left and right dimensions of a skew field over the subfield of invariants |
|
dc.type |
Article |
|
dc.relation.ispartofseries-volume |
482 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
248 |
|
dc.source.id |
SCOPUS00218693-2017-482-SID85017302812 |
|