Показать сокращенную информацию
dc.contributor.author | SKRYABIN S. | |
dc.date.accessioned | 2018-09-19T20:11:09Z | |
dc.date.available | 2018-09-19T20:11:09Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0017-0895 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/142657 | |
dc.description.abstract | Copyright © Glasgow Mathematical Journal Trust 2016Let H be a Hopf algebra with a bijective antipode, A an H-simple H-module algebra finitely generated as an algebra over the ground field and module-finite over its centre. The main result states that A has finite injective dimension and is, moreover, Artin–Schelter Gorenstein under the additional assumption that each H-orbit in the space of maximal ideals of A is dense with respect to the Zariski topology. Further conclusions are derived in the cases when the maximal spectrum of A is a single H-orbit or contains an open dense H-orbit. | |
dc.relation.ispartofseries | Glasgow Mathematical Journal | |
dc.title | ON GORENSTEINNESS OF HOPF MODULE ALGEBRAS | |
dc.type | Article in Press | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1 | |
dc.source.id | SCOPUS00170895-2016-SID84973515270 |