dc.contributor.author |
SKRYABIN S. |
|
dc.date.accessioned |
2018-09-19T20:11:09Z |
|
dc.date.available |
2018-09-19T20:11:09Z |
|
dc.date.issued |
2016 |
|
dc.identifier.issn |
0017-0895 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/142657 |
|
dc.description.abstract |
Copyright © Glasgow Mathematical Journal Trust 2016Let H be a Hopf algebra with a bijective antipode, A an H-simple H-module algebra finitely generated as an algebra over the ground field and module-finite over its centre. The main result states that A has finite injective dimension and is, moreover, Artin–Schelter Gorenstein under the additional assumption that each H-orbit in the space of maximal ideals of A is dense with respect to the Zariski topology. Further conclusions are derived in the cases when the maximal spectrum of A is a single H-orbit or contains an open dense H-orbit. |
|
dc.relation.ispartofseries |
Glasgow Mathematical Journal |
|
dc.title |
ON GORENSTEINNESS OF HOPF MODULE ALGEBRAS |
|
dc.type |
Article in Press |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1 |
|
dc.source.id |
SCOPUS00170895-2016-SID84973515270 |
|