Показать сокращенную информацию
dc.contributor.author | Isogai K. | |
dc.contributor.author | Kato T. | |
dc.contributor.author | Ohshima T. | |
dc.contributor.author | Kasai K. | |
dc.contributor.author | Oksanen A. | |
dc.contributor.author | Masumoto K. | |
dc.contributor.author | Fukushima D. | |
dc.contributor.author | Maeda K. | |
dc.contributor.author | Kawabata M. | |
dc.contributor.author | Matsuda R. | |
dc.contributor.author | Kojiguchi N. | |
dc.contributor.author | Sugiura Y. | |
dc.contributor.author | Takeda N. | |
dc.contributor.author | Matsumoto K. | |
dc.contributor.author | Itoh H. | |
dc.contributor.author | Pavlenko E. | |
dc.contributor.author | Antonyuk K. | |
dc.contributor.author | Antonyuk O. | |
dc.contributor.author | Pit N. | |
dc.contributor.author | Sosnovskij A. | |
dc.contributor.author | Baklanov A. | |
dc.contributor.author | Babina J. | |
dc.contributor.author | Sklyanov A. | |
dc.contributor.author | Kiyota S. | |
dc.contributor.author | Hambsch F. | |
dc.contributor.author | Littlefield C. | |
dc.contributor.author | Maeda Y. | |
dc.contributor.author | Cook L. | |
dc.contributor.author | Masi G. | |
dc.contributor.author | Dubovsky P. | |
dc.contributor.author | Novák R. | |
dc.contributor.author | Dvorak S. | |
dc.contributor.author | Imada A. | |
dc.contributor.author | Nogami D. | |
dc.date.accessioned | 2018-09-19T20:04:29Z | |
dc.date.available | 2018-09-19T20:04:29Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0004-6264 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/142517 | |
dc.description.abstract | © The Author 2016.We report on two superoutbursts of the AMCVn-type object CR Boo in 2014 April-March and 2015 May-June. A precursor outburst accompanied both of these superoutbursts. During the rising branch of the main superoutburst in 2014, we detected growing superhumps (stage A superhumps) whose period was 0.017669(24) d. Assuming that this period reflects the dynamical precession rate at the radius of the 3:1 resonance, we could estimate the mass ratio (q = M2/M1) of 0.101(4) by using the stage A superhump period and the orbital period of 0.0170290(6) d. This mass ratio is consistent with that expected from the theoretical evolutionary model of AMCVn-type objects. The detection of precursor outbursts and stage A superhumps is the second case in AMCVn-type objects. There are two interpretations of the outbursts of AMCVn-type objects. One is a dwarf nova (DN) outbursts analogy, which suggets that the outbursts are caused by thermal and tidal instabilities. Another is the VY Scl-type variation, which suggests that the outbursts are caused by the variation of the mass-transfer rate of the secondary. This detection of the superhump variations strongly supports the former interpretation. | |
dc.relation.ispartofseries | Publications of the Astronomical Society of Japan | |
dc.subject | Accretion | |
dc.subject | Accretion disks-novae | |
dc.subject | Cataclysmic variables-stars | |
dc.subject | Dwarf novae-stars | |
dc.subject | Individual (CR Bootis) | |
dc.title | Superoutburst of CR Bootis: Estimation of mass ratio of a typical AMCVn star by stage A superhumps | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 68 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS00046264-2016-68-4-SID84988981226 |